This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of raleqbidvv as of 9-Mar-2025. (Contributed by BJ, 22-Sep-2024) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqbidvv.1 | |- ( ph -> A = B ) |
|
| raleqbidvv.2 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | raleqbidvvOLD | |- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidvv.1 | |- ( ph -> A = B ) |
|
| 2 | raleqbidvv.2 | |- ( ph -> ( ps <-> ch ) ) |
|
| 3 | 2 | alrimiv | |- ( ph -> A. x ( ps <-> ch ) ) |
| 4 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
| 5 | 1 4 | sylib | |- ( ph -> A. x ( x e. A <-> x e. B ) ) |
| 6 | 19.26 | |- ( A. x ( ( ps <-> ch ) /\ ( x e. A <-> x e. B ) ) <-> ( A. x ( ps <-> ch ) /\ A. x ( x e. A <-> x e. B ) ) ) |
|
| 7 | 3 5 6 | sylanbrc | |- ( ph -> A. x ( ( ps <-> ch ) /\ ( x e. A <-> x e. B ) ) ) |
| 8 | imbi12 | |- ( ( x e. A <-> x e. B ) -> ( ( ps <-> ch ) -> ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) ) ) |
|
| 9 | 8 | impcom | |- ( ( ( ps <-> ch ) /\ ( x e. A <-> x e. B ) ) -> ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) ) |
| 10 | 7 9 | sylg | |- ( ph -> A. x ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) ) |
| 11 | albi | |- ( A. x ( ( x e. A -> ps ) <-> ( x e. B -> ch ) ) -> ( A. x ( x e. A -> ps ) <-> A. x ( x e. B -> ch ) ) ) |
|
| 12 | 10 11 | syl | |- ( ph -> ( A. x ( x e. A -> ps ) <-> A. x ( x e. B -> ch ) ) ) |
| 13 | df-ral | |- ( A. x e. A ps <-> A. x ( x e. A -> ps ) ) |
|
| 14 | df-ral | |- ( A. x e. B ch <-> A. x ( x e. B -> ch ) ) |
|
| 15 | 12 13 14 | 3bitr4g | |- ( ph -> ( A. x e. A ps <-> A. x e. B ch ) ) |