This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of class abstractions restricted to a singleton. (Contributed by AV, 17-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabsneq | ⊢ ( 𝑁 ∈ 𝑉 → { 𝑥 ∈ { 𝑁 } ∣ 𝜓 } = { 𝑥 ∈ 𝑉 ∣ ( 𝑥 = 𝑁 ∧ 𝜓 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn | ⊢ ( 𝑥 ∈ { 𝑁 } ↔ 𝑥 = 𝑁 ) | |
| 2 | eleq1a | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑥 = 𝑁 → 𝑥 ∈ 𝑉 ) ) | |
| 3 | 2 | pm4.71rd | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑥 = 𝑁 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 = 𝑁 ) ) ) |
| 4 | 1 3 | bitrid | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝑥 ∈ { 𝑁 } ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 = 𝑁 ) ) ) |
| 5 | 4 | anbi1d | ⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑥 ∈ { 𝑁 } ∧ 𝜓 ) ↔ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 = 𝑁 ) ∧ 𝜓 ) ) ) |
| 6 | anass | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 = 𝑁 ) ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝑉 ∧ ( 𝑥 = 𝑁 ∧ 𝜓 ) ) ) | |
| 7 | 5 6 | bitrdi | ⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑥 ∈ { 𝑁 } ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝑉 ∧ ( 𝑥 = 𝑁 ∧ 𝜓 ) ) ) ) |
| 8 | 7 | abbidv | ⊢ ( 𝑁 ∈ 𝑉 → { 𝑥 ∣ ( 𝑥 ∈ { 𝑁 } ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ ( 𝑥 = 𝑁 ∧ 𝜓 ) ) } ) |
| 9 | df-rab | ⊢ { 𝑥 ∈ { 𝑁 } ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑁 } ∧ 𝜓 ) } | |
| 10 | df-rab | ⊢ { 𝑥 ∈ 𝑉 ∣ ( 𝑥 = 𝑁 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ ( 𝑥 = 𝑁 ∧ 𝜓 ) ) } | |
| 11 | 8 9 10 | 3eqtr4g | ⊢ ( 𝑁 ∈ 𝑉 → { 𝑥 ∈ { 𝑁 } ∣ 𝜓 } = { 𝑥 ∈ 𝑉 ∣ ( 𝑥 = 𝑁 ∧ 𝜓 ) } ) |