This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a class abstraction to be a singleton. Formerly part of proof of dfiota2 . (Contributed by Andrew Salmon, 30-Jun-2011) (Revised by AV, 24-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absn | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑌 } ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sn | ⊢ { 𝑌 } = { 𝑥 ∣ 𝑥 = 𝑌 } | |
| 2 | 1 | eqeq2i | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑌 } ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝑥 = 𝑌 } ) |
| 3 | abbib | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝑥 = 𝑌 } ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑌 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑌 } ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑌 ) ) |