This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of class abstractions restricted to a singleton. (Contributed by AV, 17-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabsneq | |- ( N e. V -> { x e. { N } | ps } = { x e. V | ( x = N /\ ps ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn | |- ( x e. { N } <-> x = N ) |
|
| 2 | eleq1a | |- ( N e. V -> ( x = N -> x e. V ) ) |
|
| 3 | 2 | pm4.71rd | |- ( N e. V -> ( x = N <-> ( x e. V /\ x = N ) ) ) |
| 4 | 1 3 | bitrid | |- ( N e. V -> ( x e. { N } <-> ( x e. V /\ x = N ) ) ) |
| 5 | 4 | anbi1d | |- ( N e. V -> ( ( x e. { N } /\ ps ) <-> ( ( x e. V /\ x = N ) /\ ps ) ) ) |
| 6 | anass | |- ( ( ( x e. V /\ x = N ) /\ ps ) <-> ( x e. V /\ ( x = N /\ ps ) ) ) |
|
| 7 | 5 6 | bitrdi | |- ( N e. V -> ( ( x e. { N } /\ ps ) <-> ( x e. V /\ ( x = N /\ ps ) ) ) ) |
| 8 | 7 | abbidv | |- ( N e. V -> { x | ( x e. { N } /\ ps ) } = { x | ( x e. V /\ ( x = N /\ ps ) ) } ) |
| 9 | df-rab | |- { x e. { N } | ps } = { x | ( x e. { N } /\ ps ) } |
|
| 10 | df-rab | |- { x e. V | ( x = N /\ ps ) } = { x | ( x e. V /\ ( x = N /\ ps ) ) } |
|
| 11 | 8 9 10 | 3eqtr4g | |- ( N e. V -> { x e. { N } | ps } = { x e. V | ( x = N /\ ps ) } ) |