This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabrab | ⊢ { 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ) |
| 3 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
| 5 | 4 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) } |
| 6 | df-rab | ⊢ { 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∧ 𝜓 ) } | |
| 7 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) } | |
| 8 | 5 6 7 | 3eqtr4i | ⊢ { 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∣ 𝜓 } = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ 𝜓 ) } |