This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabrab | |- { x e. { x e. A | ph } | ps } = { x e. A | ( ph /\ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid | |- ( x e. { x e. A | ph } <-> ( x e. A /\ ph ) ) |
|
| 2 | 1 | anbi1i | |- ( ( x e. { x e. A | ph } /\ ps ) <-> ( ( x e. A /\ ph ) /\ ps ) ) |
| 3 | anass | |- ( ( ( x e. A /\ ph ) /\ ps ) <-> ( x e. A /\ ( ph /\ ps ) ) ) |
|
| 4 | 2 3 | bitri | |- ( ( x e. { x e. A | ph } /\ ps ) <-> ( x e. A /\ ( ph /\ ps ) ) ) |
| 5 | 4 | abbii | |- { x | ( x e. { x e. A | ph } /\ ps ) } = { x | ( x e. A /\ ( ph /\ ps ) ) } |
| 6 | df-rab | |- { x e. { x e. A | ph } | ps } = { x | ( x e. { x e. A | ph } /\ ps ) } |
|
| 7 | df-rab | |- { x e. A | ( ph /\ ps ) } = { x | ( x e. A /\ ( ph /\ ps ) ) } |
|
| 8 | 5 6 7 | 3eqtr4i | |- { x e. { x e. A | ph } | ps } = { x e. A | ( ph /\ ps ) } |