This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
r1ord
Metamath Proof Explorer
Description: Ordering relation for the cumulative hierarchy of sets. Part of
Proposition 9.10(2) of TakeutiZaring p. 77. (Contributed by NM , 8-Sep-2003) (Revised by Mario Carneiro , 16-Nov-2014)
Ref
Expression
Assertion
r1ord
⊢ B ∈ On → A ∈ B → R 1 ⁡ A ∈ R 1 ⁡ B
Proof
Step
Hyp
Ref
Expression
1
r1fnon
⊢ R 1 Fn On
2
1
fndmi
⊢ dom ⁡ R 1 = On
3
2
eleq2i
⊢ B ∈ dom ⁡ R 1 ↔ B ∈ On
4
r1ordg
⊢ B ∈ dom ⁡ R 1 → A ∈ B → R 1 ⁡ A ∈ R 1 ⁡ B
5
3 4
sylbir
⊢ B ∈ On → A ∈ B → R 1 ⁡ A ∈ R 1 ⁡ B