This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.41 . See r19.41v for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r19.41.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| Assertion | r19.41 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 3 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
| 5 | 1 | 19.41 | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ) |
| 6 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 7 | 6 | bicomi | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 8 | 5 7 | bianbi | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) |
| 9 | 2 4 8 | 3bitr2i | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) |