This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r19.41

Description: Restricted quantifier version of 19.41 . See r19.41v for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010)

Ref Expression
Hypothesis r19.41.1 𝑥 𝜓
Assertion r19.41 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.41.1 𝑥 𝜓
2 df-rex ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
3 anass ( ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
4 3 exbii ( ∃ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ( 𝜑𝜓 ) ) )
5 1 19.41 ( ∃ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) )
6 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
7 6 bicomi ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥𝐴 𝜑 )
8 5 7 bianbi ( ∃ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ 𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )
9 2 4 8 3bitr2i ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )