This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.41 . See r19.41v for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r19.41.1 | |- F/ x ps |
|
| Assertion | r19.41 | |- ( E. x e. A ( ph /\ ps ) <-> ( E. x e. A ph /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.41.1 | |- F/ x ps |
|
| 2 | df-rex | |- ( E. x e. A ( ph /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) ) |
|
| 3 | anass | |- ( ( ( x e. A /\ ph ) /\ ps ) <-> ( x e. A /\ ( ph /\ ps ) ) ) |
|
| 4 | 3 | exbii | |- ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> E. x ( x e. A /\ ( ph /\ ps ) ) ) |
| 5 | 1 | 19.41 | |- ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> ( E. x ( x e. A /\ ph ) /\ ps ) ) |
| 6 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 7 | 6 | bicomi | |- ( E. x ( x e. A /\ ph ) <-> E. x e. A ph ) |
| 8 | 5 7 | bianbi | |- ( E. x ( ( x e. A /\ ph ) /\ ps ) <-> ( E. x e. A ph /\ ps ) ) |
| 9 | 2 4 8 | 3bitr2i | |- ( E. x e. A ( ph /\ ps ) <-> ( E. x e. A ph /\ ps ) ) |