This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.30 . (Contributed by Scott Fenton, 25-Feb-2011) (Proof shortened by Wolf Lammen, 5-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.30 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜑 → 𝜓 ) ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 → 𝜓 ) ) |
| 3 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) | |
| 4 | 3 | biimpri | ⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
| 5 | rexim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 → 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 6 | 2 4 5 | syl2im | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 7 | 6 | orrd | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |