This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.30 of Margaris p. 90. (Contributed by NM, 12-Mar-1993) (Proof shortened by Andrew Salmon, 25-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.30 | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exnal | ⊢ ( ∃ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 𝜑 ) | |
| 2 | pm2.53 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜑 → 𝜓 ) ) | |
| 3 | 2 | aleximi | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∃ 𝑥 ¬ 𝜑 → ∃ 𝑥 𝜓 ) ) |
| 4 | 1 3 | biimtrrid | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ¬ ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
| 5 | 4 | orrd | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |