This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem form of r19.23 . (Contributed by NM, 4-Mar-2013) (Revised by Mario Carneiro, 8-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.23t | |- ( F/ x ps -> ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23t | |- ( F/ x ps -> ( A. x ( ( x e. A /\ ph ) -> ps ) <-> ( E. x ( x e. A /\ ph ) -> ps ) ) ) |
|
| 2 | df-ral | |- ( A. x e. A ( ph -> ps ) <-> A. x ( x e. A -> ( ph -> ps ) ) ) |
|
| 3 | impexp | |- ( ( ( x e. A /\ ph ) -> ps ) <-> ( x e. A -> ( ph -> ps ) ) ) |
|
| 4 | 3 | albii | |- ( A. x ( ( x e. A /\ ph ) -> ps ) <-> A. x ( x e. A -> ( ph -> ps ) ) ) |
| 5 | 2 4 | bitr4i | |- ( A. x e. A ( ph -> ps ) <-> A. x ( ( x e. A /\ ph ) -> ps ) ) |
| 6 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 7 | 6 | imbi1i | |- ( ( E. x e. A ph -> ps ) <-> ( E. x ( x e. A /\ ph ) -> ps ) ) |
| 8 | 1 5 7 | 3bitr4g | |- ( F/ x ps -> ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) ) ) |