This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The separation property of an R_0 space. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r0sep | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤 } ) = ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤 } ) | |
| 2 | 1 | isr0 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) ) |
| 3 | 2 | biimpa | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
| 4 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) ) | |
| 5 | 4 | imbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) ) |
| 7 | 4 | bibi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
| 8 | 7 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
| 9 | 6 8 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ↔ ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) ) |
| 10 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) | |
| 11 | 10 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) ) |
| 13 | 10 | bibi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) |
| 15 | 12 14 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ↔ ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) ) |
| 16 | 9 15 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) ) |
| 17 | 3 16 | mpan9 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) |