This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptfinfin.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| Assertion | ptfinfin | ⊢ ( ( 𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptfinfin.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | 1 | isptfin | ⊢ ( 𝐴 ∈ PtFin → ( 𝐴 ∈ PtFin ↔ ∀ 𝑝 ∈ 𝑋 { 𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥 } ∈ Fin ) ) |
| 3 | 2 | ibi | ⊢ ( 𝐴 ∈ PtFin → ∀ 𝑝 ∈ 𝑋 { 𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥 } ∈ Fin ) |
| 4 | eleq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥 ) ) | |
| 5 | 4 | rabbidv | ⊢ ( 𝑝 = 𝑃 → { 𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥 } = { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ) |
| 6 | 5 | eleq1d | ⊢ ( 𝑝 = 𝑃 → ( { 𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥 } ∈ Fin ↔ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ∈ Fin ) ) |
| 7 | 6 | rspccv | ⊢ ( ∀ 𝑝 ∈ 𝑋 { 𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥 } ∈ Fin → ( 𝑃 ∈ 𝑋 → { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ∈ Fin ) ) |
| 8 | 3 7 | syl | ⊢ ( 𝐴 ∈ PtFin → ( 𝑃 ∈ 𝑋 → { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ∈ Fin ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋 ) → { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ∈ Fin ) |