This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 26-Mar-2015) (Revised by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psr1lmod.p | ⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) | |
| Assertion | psr1sca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psr1lmod.p | ⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) | |
| 2 | fvi | ⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) | |
| 3 | 1 | psr1sca | ⊢ ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 4 | 2 3 | eqtrd | ⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) ) |
| 5 | scaid | ⊢ Scalar = Slot ( Scalar ‘ ndx ) | |
| 6 | 5 | str0 | ⊢ ∅ = ( Scalar ‘ ∅ ) |
| 7 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) | |
| 8 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( PwSer1 ‘ 𝑅 ) = ∅ ) | |
| 9 | 1 8 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝑃 = ∅ ) |
| 10 | 9 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( Scalar ‘ 𝑃 ) = ( Scalar ‘ ∅ ) ) |
| 11 | 6 7 10 | 3eqtr4a | ⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) ) |
| 12 | 4 11 | pm2.61i | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |