This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 26-Mar-2015) (Revised by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psr1lmod.p | |- P = ( PwSer1 ` R ) |
|
| Assertion | psr1sca2 | |- ( _I ` R ) = ( Scalar ` P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psr1lmod.p | |- P = ( PwSer1 ` R ) |
|
| 2 | fvi | |- ( R e. _V -> ( _I ` R ) = R ) |
|
| 3 | 1 | psr1sca | |- ( R e. _V -> R = ( Scalar ` P ) ) |
| 4 | 2 3 | eqtrd | |- ( R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
| 5 | scaid | |- Scalar = Slot ( Scalar ` ndx ) |
|
| 6 | 5 | str0 | |- (/) = ( Scalar ` (/) ) |
| 7 | fvprc | |- ( -. R e. _V -> ( _I ` R ) = (/) ) |
|
| 8 | fvprc | |- ( -. R e. _V -> ( PwSer1 ` R ) = (/) ) |
|
| 9 | 1 8 | eqtrid | |- ( -. R e. _V -> P = (/) ) |
| 10 | 9 | fveq2d | |- ( -. R e. _V -> ( Scalar ` P ) = ( Scalar ` (/) ) ) |
| 11 | 6 7 10 | 3eqtr4a | |- ( -. R e. _V -> ( _I ` R ) = ( Scalar ` P ) ) |
| 12 | 4 11 | pm2.61i | |- ( _I ` R ) = ( Scalar ` P ) |