This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prsref and prstr . (Contributed by Mario Carneiro, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isprs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isprs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | prslem | ⊢ ( ( 𝐾 ∈ Proset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprs.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isprs.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | 1 2 | isprs | ⊢ ( 𝐾 ∈ Proset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝐾 ∈ Proset → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) |
| 5 | breq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ≤ 𝑥 ↔ 𝑋 ≤ 𝑋 ) ) | |
| 6 | 5 | anidms | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑥 ↔ 𝑋 ≤ 𝑋 ) ) |
| 7 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦 ) ) | |
| 8 | 7 | anbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ↔ ( 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 9 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧 ) ) | |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ↔ ( ( 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑋 ≤ 𝑧 ) ) ) |
| 11 | 6 10 | anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑋 ≤ 𝑧 ) ) ) ) |
| 12 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 13 | breq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧 ) ) | |
| 14 | 12 13 | anbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧 ) ) ) |
| 15 | 14 | imbi1d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑋 ≤ 𝑧 ) ↔ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧 ) → 𝑋 ≤ 𝑧 ) ) ) |
| 16 | 15 | anbi2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑋 ≤ 𝑧 ) ) ↔ ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧 ) → 𝑋 ≤ 𝑧 ) ) ) ) |
| 17 | breq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑌 ≤ 𝑧 ↔ 𝑌 ≤ 𝑍 ) ) | |
| 18 | 17 | anbi2d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧 ) ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) ) |
| 19 | breq2 | ⊢ ( 𝑧 = 𝑍 → ( 𝑋 ≤ 𝑧 ↔ 𝑋 ≤ 𝑍 ) ) | |
| 20 | 18 19 | imbi12d | ⊢ ( 𝑧 = 𝑍 → ( ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧 ) → 𝑋 ≤ 𝑧 ) ↔ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) |
| 21 | 20 | anbi2d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧 ) → 𝑋 ≤ 𝑧 ) ) ↔ ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) ) |
| 22 | 11 16 21 | rspc3v | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) ) |
| 23 | 4 22 | mpan9 | ⊢ ( ( 𝐾 ∈ Proset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) |