This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of a positive integer is less than or equal to the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020) (Revised by AV, 29-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmolelcmf | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmocl | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∈ ℕ ) | |
| 2 | 1 | nnzd | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∈ ℤ ) |
| 3 | fzssz | ⊢ ( 1 ... 𝑁 ) ⊆ ℤ | |
| 4 | fzfid | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 5 | 0nelfz1 | ⊢ 0 ∉ ( 1 ... 𝑁 ) | |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 0 ∉ ( 1 ... 𝑁 ) ) |
| 7 | lcmfn0cl | ⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ∧ 0 ∉ ( 1 ... 𝑁 ) ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) | |
| 8 | 3 4 6 7 | mp3an2i | ⊢ ( 𝑁 ∈ ℕ0 → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
| 9 | 2 8 | jca | ⊢ ( 𝑁 ∈ ℕ0 → ( ( #p ‘ 𝑁 ) ∈ ℤ ∧ ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) ) |
| 10 | prmodvdslcmf | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) | |
| 11 | dvdsle | ⊢ ( ( ( #p ‘ 𝑁 ) ∈ ℤ ∧ ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) → ( ( #p ‘ 𝑁 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) → ( #p ‘ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) | |
| 12 | 9 10 11 | sylc | ⊢ ( 𝑁 ∈ ℕ0 → ( #p ‘ 𝑁 ) ≤ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |