This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a prime dividing a square. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by SN, 21-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdssq | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ 𝑀 ↔ 𝑃 ∥ ( 𝑀 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn | ⊢ 2 ∈ ℕ | |
| 2 | prmdvdsexp | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 2 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑀 ↑ 2 ) ↔ 𝑃 ∥ 𝑀 ) ) | |
| 3 | 1 2 | mp3an3 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑀 ↑ 2 ) ↔ 𝑃 ∥ 𝑀 ) ) |
| 4 | 3 | bicomd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ) → ( 𝑃 ∥ 𝑀 ↔ 𝑃 ∥ ( 𝑀 ↑ 2 ) ) ) |