This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prlem1.1 | ⊢ ( 𝜑 → ( 𝜂 ↔ 𝜒 ) ) | |
| prlem1.2 | ⊢ ( 𝜓 → ¬ 𝜃 ) | ||
| Assertion | prlem1 | ⊢ ( 𝜑 → ( 𝜓 → ( ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prlem1.1 | ⊢ ( 𝜑 → ( 𝜂 ↔ 𝜒 ) ) | |
| 2 | prlem1.2 | ⊢ ( 𝜓 → ¬ 𝜃 ) | |
| 3 | 1 | biimprd | ⊢ ( 𝜑 → ( 𝜒 → 𝜂 ) ) |
| 4 | 3 | adantld | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) → 𝜂 ) ) |
| 5 | 2 | pm2.21d | ⊢ ( 𝜓 → ( 𝜃 → 𝜂 ) ) |
| 6 | 5 | adantrd | ⊢ ( 𝜓 → ( ( 𝜃 ∧ 𝜏 ) → 𝜂 ) ) |
| 7 | 4 6 | jaao | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) ) |
| 8 | 7 | ex | ⊢ ( 𝜑 → ( 𝜓 → ( ( ( 𝜓 ∧ 𝜒 ) ∨ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) ) ) |