This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 21-Jun-1993) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 9-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prlem2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 2 | simpl | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜒 ) | |
| 3 | 1 2 | orim12i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) → ( 𝜑 ∨ 𝜒 ) ) |
| 4 | 3 | pm4.71ri | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∨ 𝜒 ) ∧ ( ( 𝜑 ∧ 𝜓 ) ∨ ( 𝜒 ∧ 𝜃 ) ) ) ) |