This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a partial ordering, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 17-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predpoirr | ⊢ ( 𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poirr | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ¬ 𝑋 𝑅 𝑋 ) | |
| 2 | elpredg | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑋 𝑅 𝑋 ) ) | |
| 3 | 2 | anidms | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑋 𝑅 𝑋 ) ) |
| 4 | 3 | notbid | ⊢ ( 𝑋 ∈ 𝐴 → ( ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ¬ 𝑋 𝑅 𝑋 ) ) |
| 5 | 1 4 | imbitrrid | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| 6 | 5 | expd | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑅 Po 𝐴 → ( 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
| 7 | 6 | pm2.43b | ⊢ ( 𝑅 Po 𝐴 → ( 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| 8 | predel | ⊢ ( 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑋 ∈ 𝐴 ) | |
| 9 | 8 | con3i | ⊢ ( ¬ 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 10 | 7 9 | pm2.61d1 | ⊢ ( 𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |