This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a partial ordering, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 17-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predpoirr | |- ( R Po A -> -. X e. Pred ( R , A , X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poirr | |- ( ( R Po A /\ X e. A ) -> -. X R X ) |
|
| 2 | elpredg | |- ( ( X e. A /\ X e. A ) -> ( X e. Pred ( R , A , X ) <-> X R X ) ) |
|
| 3 | 2 | anidms | |- ( X e. A -> ( X e. Pred ( R , A , X ) <-> X R X ) ) |
| 4 | 3 | notbid | |- ( X e. A -> ( -. X e. Pred ( R , A , X ) <-> -. X R X ) ) |
| 5 | 1 4 | imbitrrid | |- ( X e. A -> ( ( R Po A /\ X e. A ) -> -. X e. Pred ( R , A , X ) ) ) |
| 6 | 5 | expd | |- ( X e. A -> ( R Po A -> ( X e. A -> -. X e. Pred ( R , A , X ) ) ) ) |
| 7 | 6 | pm2.43b | |- ( R Po A -> ( X e. A -> -. X e. Pred ( R , A , X ) ) ) |
| 8 | predel | |- ( X e. Pred ( R , A , X ) -> X e. A ) |
|
| 9 | 8 | con3i | |- ( -. X e. A -> -. X e. Pred ( R , A , X ) ) |
| 10 | 7 9 | pm2.61d1 | |- ( R Po A -> -. X e. Pred ( R , A , X ) ) |