This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012) (Proof shortened by Scott Fenton, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predpo | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpo2 | ⊢ ( 𝑅 Po 𝐴 ↔ ( ( 𝑅 ∩ ( I ↾ 𝐴 ) ) = ∅ ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝑅 Po 𝐴 → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ) |
| 4 | simpr | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| 5 | simplr | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → 𝑋 ∈ 𝐴 ) | |
| 6 | predtrss | ⊢ ( ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ 𝑅 ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∧ 𝑋 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 8 | 7 | ex | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → Pred ( 𝑅 , 𝐴 , 𝑌 ) ⊆ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |