This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012) (Proof shortened by Scott Fenton, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predpo | |- ( ( R Po A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpo2 | |- ( R Po A <-> ( ( R i^i ( _I |` A ) ) = (/) /\ ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R ) ) |
|
| 2 | 1 | simprbi | |- ( R Po A -> ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R ) |
| 3 | 2 | ad2antrr | |- ( ( ( R Po A /\ X e. A ) /\ Y e. Pred ( R , A , X ) ) -> ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R ) |
| 4 | simpr | |- ( ( ( R Po A /\ X e. A ) /\ Y e. Pred ( R , A , X ) ) -> Y e. Pred ( R , A , X ) ) |
|
| 5 | simplr | |- ( ( ( R Po A /\ X e. A ) /\ Y e. Pred ( R , A , X ) ) -> X e. A ) |
|
| 6 | predtrss | |- ( ( ( ( R i^i ( A X. A ) ) o. ( R i^i ( A X. A ) ) ) C_ R /\ Y e. Pred ( R , A , X ) /\ X e. A ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) |
|
| 7 | 3 4 5 6 | syl3anc | |- ( ( ( R Po A /\ X e. A ) /\ Y e. Pred ( R , A , X ) ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) |
| 8 | 7 | ex | |- ( ( R Po A /\ X e. A ) -> ( Y e. Pred ( R , A , X ) -> Pred ( R , A , Y ) C_ Pred ( R , A , X ) ) ) |