This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predeq123 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ||
| 2 | cnveq | ||
| 3 | 2 | 3ad2ant1 | |
| 4 | sneq | ||
| 5 | 4 | 3ad2ant3 | |
| 6 | 3 5 | imaeq12d | |
| 7 | 1 6 | ineq12d | |
| 8 | df-pred | ||
| 9 | df-pred | ||
| 10 | 7 8 9 | 3eqtr4g |