This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A structure product of rings has closed binary operation. (Contributed by Mario Carneiro, 11-Mar-2015) (Proof shortened by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsmulrcl.y | ||
| prdsmulrcl.b | |||
| prdsmulrcl.t | |||
| prdsmulrcl.s | |||
| prdsmulrcl.i | |||
| prdsmulrcl.r | |||
| prdsmulrcl.f | |||
| prdsmulrcl.g | |||
| Assertion | prdsmulrcl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsmulrcl.y | ||
| 2 | prdsmulrcl.b | ||
| 3 | prdsmulrcl.t | ||
| 4 | prdsmulrcl.s | ||
| 5 | prdsmulrcl.i | ||
| 6 | prdsmulrcl.r | ||
| 7 | prdsmulrcl.f | ||
| 8 | prdsmulrcl.g | ||
| 9 | ringssrng | ||
| 10 | fss | ||
| 11 | 6 9 10 | sylancl | |
| 12 | 1 2 3 4 5 11 7 8 | prdsmulrngcl |