This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmsspw | ⊢ ( 𝐴 ↑pm 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | ⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → ¬ ( 𝐴 ↑pm 𝐵 ) = ∅ ) | |
| 2 | fnpm | ⊢ ↑pm Fn ( V × V ) | |
| 3 | 2 | fndmi | ⊢ dom ↑pm = ( V × V ) |
| 4 | 3 | ndmov | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ↑pm 𝐵 ) = ∅ ) |
| 5 | 1 4 | nsyl2 | ⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 6 | elpmg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) ↔ ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) ) |
| 8 | 7 | ibi | ⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → ( Fun 𝑓 ∧ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) |
| 9 | 8 | simprd | ⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) |
| 10 | velpw | ⊢ ( 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝑓 ⊆ ( 𝐵 × 𝐴 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝑓 ∈ ( 𝐴 ↑pm 𝐵 ) → 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ) |
| 12 | 11 | ssriv | ⊢ ( 𝐴 ↑pm 𝐵 ) ⊆ 𝒫 ( 𝐵 × 𝐴 ) |