This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmsspw | |- ( A ^pm B ) C_ ~P ( B X. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | |- ( f e. ( A ^pm B ) -> -. ( A ^pm B ) = (/) ) |
|
| 2 | fnpm | |- ^pm Fn ( _V X. _V ) |
|
| 3 | 2 | fndmi | |- dom ^pm = ( _V X. _V ) |
| 4 | 3 | ndmov | |- ( -. ( A e. _V /\ B e. _V ) -> ( A ^pm B ) = (/) ) |
| 5 | 1 4 | nsyl2 | |- ( f e. ( A ^pm B ) -> ( A e. _V /\ B e. _V ) ) |
| 6 | elpmg | |- ( ( A e. _V /\ B e. _V ) -> ( f e. ( A ^pm B ) <-> ( Fun f /\ f C_ ( B X. A ) ) ) ) |
|
| 7 | 5 6 | syl | |- ( f e. ( A ^pm B ) -> ( f e. ( A ^pm B ) <-> ( Fun f /\ f C_ ( B X. A ) ) ) ) |
| 8 | 7 | ibi | |- ( f e. ( A ^pm B ) -> ( Fun f /\ f C_ ( B X. A ) ) ) |
| 9 | 8 | simprd | |- ( f e. ( A ^pm B ) -> f C_ ( B X. A ) ) |
| 10 | velpw | |- ( f e. ~P ( B X. A ) <-> f C_ ( B X. A ) ) |
|
| 11 | 9 10 | sylibr | |- ( f e. ( A ^pm B ) -> f e. ~P ( B X. A ) ) |
| 12 | 11 | ssriv | |- ( A ^pm B ) C_ ~P ( B X. A ) |