This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.55 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 20-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.55 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biort | ⊢ ( 𝜑 → ( 𝜑 ↔ ( 𝜑 ∨ 𝜓 ) ) ) | |
| 2 | 1 | bicomd | ⊢ ( 𝜑 → ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜑 ) ) |
| 3 | biorf | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) | |
| 4 | 3 | bicomd | ⊢ ( ¬ 𝜑 → ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |
| 5 | 2 4 | nsyl5 | ⊢ ( ¬ ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜑 ) → ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |
| 6 | 5 | orri | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜑 ) ∨ ( ( 𝜑 ∨ 𝜓 ) ↔ 𝜓 ) ) |