This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *5.55 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 20-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.55 | |- ( ( ( ph \/ ps ) <-> ph ) \/ ( ( ph \/ ps ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biort | |- ( ph -> ( ph <-> ( ph \/ ps ) ) ) |
|
| 2 | 1 | bicomd | |- ( ph -> ( ( ph \/ ps ) <-> ph ) ) |
| 3 | biorf | |- ( -. ph -> ( ps <-> ( ph \/ ps ) ) ) |
|
| 4 | 3 | bicomd | |- ( -. ph -> ( ( ph \/ ps ) <-> ps ) ) |
| 5 | 2 4 | nsyl5 | |- ( -. ( ( ph \/ ps ) <-> ph ) -> ( ( ph \/ ps ) <-> ps ) ) |
| 6 | 5 | orri | |- ( ( ( ph \/ ps ) <-> ph ) \/ ( ( ph \/ ps ) <-> ps ) ) |