This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *3.11 of WhiteheadRussell p. 111. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm3.11 | ⊢ ( ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anor | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) | |
| 2 | 1 | biimpri | ⊢ ( ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) → ( 𝜑 ∧ 𝜓 ) ) |