This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm3.11

Description: Theorem *3.11 of WhiteheadRussell p. 111. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm3.11
|- ( -. ( -. ph \/ -. ps ) -> ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 anor
 |-  ( ( ph /\ ps ) <-> -. ( -. ph \/ -. ps ) )
2 1 biimpri
 |-  ( -. ( -. ph \/ -. ps ) -> ( ph /\ ps ) )