This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.81 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.81 | ⊢ ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orim2 | ⊢ ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ ( 𝜒 → 𝜃 ) ) ) ) | |
| 2 | pm2.76 | ⊢ ( ( 𝜑 ∨ ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜃 ) ) ) | |
| 3 | 1 2 | syl6 | ⊢ ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜃 ) ) ) ) |