This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.8 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.8 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( ¬ 𝜓 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜑 → 𝜓 ) ) | |
| 2 | 1 | con1d | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜓 → 𝜑 ) ) |
| 3 | 2 | orim1d | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( ¬ 𝜓 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) ) |