This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm2.81

Description: Theorem *2.81 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.81 ψ χ θ φ ψ φ χ φ θ

Proof

Step Hyp Ref Expression
1 orim2 ψ χ θ φ ψ φ χ θ
2 pm2.76 φ χ θ φ χ φ θ
3 1 2 syl6 ψ χ θ φ ψ φ χ φ θ