This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjfn.1 | ⊢ 𝐻 ∈ Cℋ | |
| Assertion | pjfoi | ⊢ ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjfn.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | pjfni | ⊢ ( projℎ ‘ 𝐻 ) Fn ℋ |
| 3 | 1 | pjrni | ⊢ ran ( projℎ ‘ 𝐻 ) = 𝐻 |
| 4 | df-fo | ⊢ ( ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) Fn ℋ ∧ ran ( projℎ ‘ 𝐻 ) = 𝐻 ) ) | |
| 5 | 2 3 4 | mpbir2an | ⊢ ( projℎ ‘ 𝐻 ) : ℋ –onto→ 𝐻 |