This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoi0.1 | ⊢ 𝐺 ∈ Cℋ | |
| pjoi0.2 | ⊢ 𝐻 ∈ Cℋ | ||
| pjoi0.3 | ⊢ 𝐴 ∈ ℋ | ||
| Assertion | pjopythi | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( normℎ ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoi0.1 | ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjoi0.2 | ⊢ 𝐻 ∈ Cℋ | |
| 3 | pjoi0.3 | ⊢ 𝐴 ∈ ℋ | |
| 4 | 1 2 3 | pjoi0i | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) |
| 5 | 1 3 | pjhclii | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ |
| 6 | 2 3 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 7 | 5 6 | normpythi | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 → ( ( normℎ ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( normℎ ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |