This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pythagorean theorem for projections on orthogonal subspaces. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoi0.1 | |- G e. CH |
|
| pjoi0.2 | |- H e. CH |
||
| pjoi0.3 | |- A e. ~H |
||
| Assertion | pjopythi | |- ( G C_ ( _|_ ` H ) -> ( ( normh ` ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoi0.1 | |- G e. CH |
|
| 2 | pjoi0.2 | |- H e. CH |
|
| 3 | pjoi0.3 | |- A e. ~H |
|
| 4 | 1 2 3 | pjoi0i | |- ( G C_ ( _|_ ` H ) -> ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 ) |
| 5 | 1 3 | pjhclii | |- ( ( projh ` G ) ` A ) e. ~H |
| 6 | 2 3 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 7 | 5 6 | normpythi | |- ( ( ( ( projh ` G ) ` A ) .ih ( ( projh ` H ) ` A ) ) = 0 -> ( ( normh ` ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) ) |
| 8 | 4 7 | syl | |- ( G C_ ( _|_ ` H ) -> ( ( normh ` ( ( ( projh ` G ) ` A ) +h ( ( projh ` H ) ` A ) ) ) ^ 2 ) = ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) + ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) ) |