This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of y for the projection theorem. (Contributed by NM, 6-Nov-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhtheu2 | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) | |
| 2 | pjhtheu | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
| 4 | simpll | ⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐻 ∈ Cℋ ) | |
| 5 | ococ | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) = 𝐻 ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) = 𝐻 ) |
| 7 | 6 | rexeqdv | ⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
| 8 | 1 | adantr | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
| 9 | chel | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝑦 ∈ ℋ ) | |
| 10 | 8 9 | sylan | ⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝑦 ∈ ℋ ) |
| 11 | 10 | adantr | ⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → 𝑦 ∈ ℋ ) |
| 12 | chel | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ ℋ ) | |
| 13 | 4 12 | sylan | ⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ ℋ ) |
| 14 | ax-hvcom | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑦 +ℎ 𝑥 ) = ( 𝑥 +ℎ 𝑦 ) ) | |
| 15 | 11 13 14 | syl2anc | ⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝑦 +ℎ 𝑥 ) = ( 𝑥 +ℎ 𝑦 ) ) |
| 16 | 15 | eqeq2d | ⊢ ( ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝑥 ∈ 𝐻 ) → ( 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 17 | 16 | rexbidva | ⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 18 | 7 17 | bitrd | ⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 19 | 18 | reubidva | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 20 | 3 19 | mpbid | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ∃! 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∃ 𝑥 ∈ 𝐻 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |