This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all complex inner product spaces. An inner product space is a normed vector space whose norm satisfies the parallelogram law (a property that induces an inner product). Based on Exercise 4(b) of ReedSimon p. 63. The vector operation is g , the scalar product is s , and the norm is n . An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ph | ⊢ CPreHilOLD = ( NrmCVec ∩ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccphlo | ⊢ CPreHilOLD | |
| 1 | cnv | ⊢ NrmCVec | |
| 2 | vg | ⊢ 𝑔 | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | vn | ⊢ 𝑛 | |
| 5 | vx | ⊢ 𝑥 | |
| 6 | 2 | cv | ⊢ 𝑔 |
| 7 | 6 | crn | ⊢ ran 𝑔 |
| 8 | vy | ⊢ 𝑦 | |
| 9 | 4 | cv | ⊢ 𝑛 |
| 10 | 5 | cv | ⊢ 𝑥 |
| 11 | 8 | cv | ⊢ 𝑦 |
| 12 | 10 11 6 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
| 13 | 12 9 | cfv | ⊢ ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) |
| 14 | cexp | ⊢ ↑ | |
| 15 | c2 | ⊢ 2 | |
| 16 | 13 15 14 | co | ⊢ ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) |
| 17 | caddc | ⊢ + | |
| 18 | c1 | ⊢ 1 | |
| 19 | 18 | cneg | ⊢ - 1 |
| 20 | 3 | cv | ⊢ 𝑠 |
| 21 | 19 11 20 | co | ⊢ ( - 1 𝑠 𝑦 ) |
| 22 | 10 21 6 | co | ⊢ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) |
| 23 | 22 9 | cfv | ⊢ ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) |
| 24 | 23 15 14 | co | ⊢ ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) |
| 25 | 16 24 17 | co | ⊢ ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) |
| 26 | cmul | ⊢ · | |
| 27 | 10 9 | cfv | ⊢ ( 𝑛 ‘ 𝑥 ) |
| 28 | 27 15 14 | co | ⊢ ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) |
| 29 | 11 9 | cfv | ⊢ ( 𝑛 ‘ 𝑦 ) |
| 30 | 29 15 14 | co | ⊢ ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) |
| 31 | 28 30 17 | co | ⊢ ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) |
| 32 | 15 31 26 | co | ⊢ ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 33 | 25 32 | wceq | ⊢ ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 34 | 33 8 7 | wral | ⊢ ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 35 | 34 5 7 | wral | ⊢ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 36 | 35 2 3 4 | coprab | ⊢ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } |
| 37 | 1 36 | cin | ⊢ ( NrmCVec ∩ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) |
| 38 | 0 37 | wceq | ⊢ CPreHilOLD = ( NrmCVec ∩ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ∀ 𝑥 ∈ ran 𝑔 ∀ 𝑦 ∈ ran 𝑔 ( ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ↑ 2 ) + ( ( 𝑛 ‘ ( 𝑥 𝑔 ( - 1 𝑠 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑛 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑛 ‘ 𝑦 ) ↑ 2 ) ) ) } ) |