This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phrel | ⊢ Rel CPreHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phnv | ⊢ ( 𝑥 ∈ CPreHilOLD → 𝑥 ∈ NrmCVec ) | |
| 2 | 1 | ssriv | ⊢ CPreHilOLD ⊆ NrmCVec |
| 3 | nvrel | ⊢ Rel NrmCVec | |
| 4 | relss | ⊢ ( CPreHilOLD ⊆ NrmCVec → ( Rel NrmCVec → Rel CPreHilOLD ) ) | |
| 5 | 2 3 4 | mp2 | ⊢ Rel CPreHilOLD |