This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A symbol in a word truncated by one symbol. (Contributed by Alexander van der Vekens, 16-Jun-2018) (Revised by AV, 3-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxtrcfv | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfin | ⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin ) | |
| 2 | 1elfz0hash | ⊢ ( ( 𝑊 ∈ Fin ∧ 𝑊 ≠ ∅ ) → 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 4 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 5 | elfz1end | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 6 | 4 5 | sylib | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 7 | 3 6 | jca | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 9 | fz0fzdiffz0 | ⊢ ( ( 1 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 11 | pfxfv | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) | |
| 12 | 10 11 | syld3an2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |