This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If you can prove disjointness (e.g. disjALTV0 , disjALTVid , disjALTVidres , disjALTVxrnidres , search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV ), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | petlemi.1 | ⊢ Disj 𝑅 | |
| Assertion | petlemi | ⊢ ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 / ≀ 𝑅 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petlemi.1 | ⊢ Disj 𝑅 | |
| 2 | 1 | a1i | ⊢ ( ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 / ≀ 𝑅 ) = 𝐴 ) → Disj 𝑅 ) |
| 3 | 2 | petlem | ⊢ ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 / ≀ 𝑅 ) = 𝐴 ) ) |