This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem disjALTV0

Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021)

Ref Expression
Assertion disjALTV0 Disj ∅

Proof

Step Hyp Ref Expression
1 br0 ¬ 𝑢𝑥
2 1 nex ¬ ∃ 𝑢 𝑢𝑥
3 nexmo ( ¬ ∃ 𝑢 𝑢𝑥 → ∃* 𝑢 𝑢𝑥 )
4 2 3 ax-mp ∃* 𝑢 𝑢𝑥
5 4 ax-gen 𝑥 ∃* 𝑢 𝑢𝑥
6 rel0 Rel ∅
7 dfdisjALTV4 ( Disj ∅ ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢𝑥 ∧ Rel ∅ ) )
8 5 6 7 mpbir2an Disj ∅