This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If you can prove disjointness (e.g. disjALTV0 , disjALTVid , disjALTVidres , disjALTVxrnidres , search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV ), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | petlemi.1 | |- Disj R |
|
| Assertion | petlemi | |- ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petlemi.1 | |- Disj R |
|
| 2 | 1 | a1i | |- ( ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) -> Disj R ) |
| 3 | 2 | petlem | |- ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) ) |