This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Partition-Equivalence Theorem pet2 . (Contributed by Peter Mazsa, 15-Jul-2020) (Revised by Peter Mazsa, 22-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelqseqdisj5 | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( 𝑆 ⋉ ( ◡ E ↾ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj3 | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( ◡ E ↾ 𝐴 ) ) | |
| 2 | disjimxrn | ⊢ ( Disj ( ◡ E ↾ 𝐴 ) → Disj ( 𝑆 ⋉ ( ◡ E ↾ 𝐴 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( 𝑆 ⋉ ( ◡ E ↾ 𝐴 ) ) ) |