This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | patoms.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| patoms.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| patoms.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| patoms.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | pats | ⊢ ( 𝐾 ∈ 𝐷 → 𝐴 = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | patoms.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | patoms.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 3 | patoms.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | patoms.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | elex | ⊢ ( 𝐾 ∈ 𝐷 → 𝐾 ∈ V ) | |
| 6 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
| 8 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( ⋖ ‘ 𝑝 ) = ( ⋖ ‘ 𝐾 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( ⋖ ‘ 𝑝 ) = 𝐶 ) |
| 10 | 9 | breqd | ⊢ ( 𝑝 = 𝐾 → ( ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑥 ↔ ( 0. ‘ 𝑝 ) 𝐶 𝑥 ) ) |
| 11 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = ( 0. ‘ 𝐾 ) ) | |
| 12 | 11 2 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = 0 ) |
| 13 | 12 | breq1d | ⊢ ( 𝑝 = 𝐾 → ( ( 0. ‘ 𝑝 ) 𝐶 𝑥 ↔ 0 𝐶 𝑥 ) ) |
| 14 | 10 13 | bitrd | ⊢ ( 𝑝 = 𝐾 → ( ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑥 ↔ 0 𝐶 𝑥 ) ) |
| 15 | 7 14 | rabeqbidv | ⊢ ( 𝑝 = 𝐾 → { 𝑥 ∈ ( Base ‘ 𝑝 ) ∣ ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑥 } = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |
| 16 | df-ats | ⊢ Atoms = ( 𝑝 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑝 ) ∣ ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑥 } ) | |
| 17 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 18 | 17 | rabex | ⊢ { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ∈ V |
| 19 | 15 16 18 | fvmpt | ⊢ ( 𝐾 ∈ V → ( Atoms ‘ 𝐾 ) = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |
| 20 | 4 19 | eqtrid | ⊢ ( 𝐾 ∈ V → 𝐴 = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |
| 21 | 5 20 | syl | ⊢ ( 𝐾 ∈ 𝐷 → 𝐴 = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |