This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of atoms in a poset. (Contributed by NM, 18-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | patoms.b | |- B = ( Base ` K ) |
|
| patoms.z | |- .0. = ( 0. ` K ) |
||
| patoms.c | |- C = ( |
||
| patoms.a | |- A = ( Atoms ` K ) |
||
| Assertion | pats | |- ( K e. D -> A = { x e. B | .0. C x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | patoms.b | |- B = ( Base ` K ) |
|
| 2 | patoms.z | |- .0. = ( 0. ` K ) |
|
| 3 | patoms.c | |- C = ( |
|
| 4 | patoms.a | |- A = ( Atoms ` K ) |
|
| 5 | elex | |- ( K e. D -> K e. _V ) |
|
| 6 | fveq2 | |- ( p = K -> ( Base ` p ) = ( Base ` K ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( p = K -> ( Base ` p ) = B ) |
| 8 | fveq2 | |- ( p = K -> ( |
|
| 9 | 8 3 | eqtr4di | |- ( p = K -> ( |
| 10 | 9 | breqd | |- ( p = K -> ( ( 0. ` p ) ( |
| 11 | fveq2 | |- ( p = K -> ( 0. ` p ) = ( 0. ` K ) ) |
|
| 12 | 11 2 | eqtr4di | |- ( p = K -> ( 0. ` p ) = .0. ) |
| 13 | 12 | breq1d | |- ( p = K -> ( ( 0. ` p ) C x <-> .0. C x ) ) |
| 14 | 10 13 | bitrd | |- ( p = K -> ( ( 0. ` p ) ( |
| 15 | 7 14 | rabeqbidv | |- ( p = K -> { x e. ( Base ` p ) | ( 0. ` p ) ( |
| 16 | df-ats | |- Atoms = ( p e. _V |-> { x e. ( Base ` p ) | ( 0. ` p ) ( |
|
| 17 | 1 | fvexi | |- B e. _V |
| 18 | 17 | rabex | |- { x e. B | .0. C x } e. _V |
| 19 | 15 16 18 | fvmpt | |- ( K e. _V -> ( Atoms ` K ) = { x e. B | .0. C x } ) |
| 20 | 4 19 | eqtrid | |- ( K e. _V -> A = { x e. B | .0. C x } ) |
| 21 | 5 20 | syl | |- ( K e. D -> A = { x e. B | .0. C x } ) |