This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered triple membership in a triple Cartesian product. (Contributed by Scott Fenton, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | otelxp | ⊢ ( 〈 𝐴 , 𝐵 , 𝐶 〉 ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | ⊢ ( 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐷 × 𝐸 ) ∧ 𝐶 ∈ 𝐹 ) ) | |
| 2 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝐷 × 𝐸 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ) ) | |
| 3 | 1 2 | bianbi | ⊢ ( 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ) ∧ 𝐶 ∈ 𝐹 ) ) |
| 4 | df-ot | ⊢ 〈 𝐴 , 𝐵 , 𝐶 〉 = 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 | |
| 5 | 4 | eleq1i | ⊢ ( 〈 𝐴 , 𝐵 , 𝐶 〉 ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ 〈 〈 𝐴 , 𝐵 〉 , 𝐶 〉 ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ) |
| 6 | df-3an | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ) ∧ 𝐶 ∈ 𝐹 ) ) | |
| 7 | 3 5 6 | 3bitr4i | ⊢ ( 〈 𝐴 , 𝐵 , 𝐶 〉 ∈ ( ( 𝐷 × 𝐸 ) × 𝐹 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹 ) ) |